Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Daniel E. Lynch ${ }^{\text {a* }}$ and Ian McClenaghan ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ${ }^{\mathbf{b}}$ Key Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.056$
$w R$ factor $=0.179$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Methyl-2-(8-quinolyl)phthalazin-1-one

The structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$, comprises a twisted molecule, with the dihedral angle between the two ring systems being 72.4 (1) ${ }^{\circ}$. The phthalazin- 1 -one O atom has

Received 23 August 2002
Accepted 27 August 2002
Online 6 September 2002 three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contacts.

Comment

The title compound, (I) (Fig. 1), was obtained, rather than the intermediate hydrazone, from the reaction of 8-hydrazinoquinoline dihydrochloride hydrate and 2-acetylbenzoic acid, as shown in the reaction scheme below.

The intended product, the (E)-1-ethanone 8-quinolylhydrozone derivative (for example, Lynch \& McClenaghan, 2001a), might have been useful in the cyclization to the

Figure 1
The molecular configuration and atom-numbering scheme for the title compound, showing 50% probability ellipsoids.
corresponding pyrrolo[3,2-h]quinoline (for example, Lynch \& McClenaghan, 2001b). However, products similar to (I) have been reported for the reactions of phenylhydrazine with, respectively, 2-acetylbenzoic acid (Rowe \& Peters, 1931), 2acetylbenzonitrile (Helberger \& Rebay, 1937), and 3-(2-carboxyphenyl)-3-oxo-propionic acid (Roser, 1885). In (I), the two rings are inclined at $72.4(1)^{\circ}$ and the phthalazin-1-one O atom has three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contacts (Table 1).

Experimental

8-Hydrazinoquinoline dihydrochloride hydrate $(0.03 \mathrm{mmol})$, 2acetylbenzoic acid $(0.03 \mathrm{mmol})$ and triethylamine $(0.046 \mathrm{mmol})$ were refluxed in 1:5 aqueous ethanol for 80 min . A crystalline solid was collected following acidification with dilute acetic acid (yield 95\%). Crystals were grown from an ethanol solution (m.p. 450-452 K).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=287.31$
Triclinic, $P \overline{1}$
$a=7.950(4) \AA$
$b=8.4914(6) \AA$
$c=10.8850(7) \AA$
$\alpha=77.060(6)^{\circ}$
$\beta=74.14(5)^{\circ}$
$\gamma=86.277(3)^{\circ}$
$V=689.05(7) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.385 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6981 \\
& \quad \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.10 \times 0.10 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker-Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.991, T_{\text {max }}=0.996$
9188 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.179$
$S=0.97$
3005 reflections
200 parameters

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}_{1} 1^{\mathrm{i}}$	0.95	2.57	$3.442(3)$	153
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.95	2.60	$3.469(4)$	153
$\mathrm{C}^{\mathrm{iii}}-\mathrm{H} 21 \cdots \mathrm{O}^{\text {ii }}$	0.98	2.36	$3.194(3)$	142

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, 1-y, 1-z$; (iii) $1+x, y, z$.

All H atoms were included in the refinement, at calculated positions, as riding models, with $\mathrm{C}-\mathrm{H}$ distances set to 0.95 ($\mathrm{Ar}-\mathrm{H}$) or $0.98 \AA\left(\mathrm{CH}_{3}\right)$.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Helberger, J. H. \& von Rebay, A. (1937). Justus Liebigs Ann. Chem. 531, 279287.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Lynch, D. E. \& McClenaghan, I. (2001a). Acta Cryst. E57, o52-o53.
Lynch, D. E. \& McClenaghan, I. (2001b). Acta Cryst. E57, o56-o57.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Roser, W. (1885). Chem. Ber. 18, 804.
Rowe, F. M. \& Peters, A. T. (1931). J. Chem. Soc. pp. 1918-1925.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON97. Version of May 1997. University of Utrecht, The Netherlands.

